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Abstract
Two-dimensional pattern reverse Monte Carlo (2D pattern RMC) analysis is
performed to model the structures of nano-particles in uniaxially elongated
rubbers using two-dimensional patterns of structure factor of the nano-particles
obtained by time-resolved two-dimensional ultra-small angle x-ray scattering.
Four spot patterns are observed for a large elongation ratio and the shapes
change with increasing elongation ratio. We performed the 2D pattern RMC
method for the uniaxial system in order to make a model of the structures from
the two-dimensional structure factors. The preliminary results of the 2D pattern
RMC analysis of the two-dimensional structure factors of silica particles in a
uniaxially elongated styrene–butadiene rubber are presented.

1. Introduction

Reinforcement effects on rubbers by addition of fillers such as carbon black and silica were
discovered in 1904 and widely used in industrial materials such as tyres [1]. Structures of fillers
play a very important role in the reinforcement, have been widely studied in order to understand
the reinforcement and have improved the properties of industrial products. The diameter of the
carbon black and the silica particles used as a filler is in the range of 10–100 nm. 3D-TEM
tomography is a powerful tool for studying the sub-micro-scale structure of small particles, the
diameter of which is a few tens of nanometres [2–4]. However, 3D-TEM tomography is not
suited to study structural changes. The observation of the condensed and large scale structures
of sub-micro-size particles in a deformed elastomer by small angle x-ray scattering (SAXS)
and small angle neutron scattering (SANS) has attracted much interest.
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Recently, Shinohara et al have observed the four spot patterns in uniaxially elongated
rubbers filled with spherical silica particles (diameter 100 nm) by time-resolved two-
dimensional ultra-small angle x-ray scattering (2D-USAXS) [5]. It is found that the four
spot patterns change with increasing elongation ratio. These four spot patterns have also been
observed by Oberdisse et al in the silica–latex system (diameter 10 nm) under uniaxial strain
by SANS experiments [6, 7]. They studied the relationship between the mechanical properties
and the structure of silica particles and concluded that the silica particles inside a stretched
sample show non-affine displacements. They claimed the extension of the reverse Monte Carlo
algorithm to two-dimensional structure factors.

In order to study the large scale (10 μm order) structure of 100 nm size silica particles,
which form a network structure, the reverse Monte Carlo (RMC) method for SAXS data
covering up to a few μm scale structure is a prime candidate. The reverse Monte Carlo method
is a powerful tool to obtain clear interpretations of the structures in real space from observed
structure factors. For dilute polymer latexes, colloids and nanoparticles, RMC for the SAXS
experimental data has been performed and the shape of an agglomerate is examined [8, 9]. On
the other hand, for the case that particles/atoms form a network structure, the structure factor
in the small qσ region increases with decreasing qσ , where q is the wavenumber and σ is the
diameter of a particle. In order to perform RMC analysis of this system, much larger system
size (number of particles/atoms) is required than for the dilute cases because a lower limit of qσ

is much smaller than that for the dilute case. Recently, one of the present authors performed
the first RMC analysis to examine the large scale (network) structure of expanded fluid Hg
around critical points by using the SAXS experimental data [10], where the configurations
of 100 000 Hg atoms are reproduced by RMC analysis using the structure factor observed in
SAXS experiments with the help of the wide angle x-ray diffraction (XRD) data in the same
thermodynamic state [11, 12]. It is confirmed that RMC analysis is a powerful tool to discuss
the large density fluctuations of expanded fluid Hg appearing near the critical point. Pusztai
et al have also examined the validity of RMC modelling including the small angle region
by using the artificial structure factor, which is calculated from the configuration made by a
simulation for the diffusion-limited cluster aggregation (DLCA) [13]. The particles in this
RMC analysis correspond to the aggregated cluster of atoms (coarse-grained atom) instead of
a single atom used in the conventional RMC analysis. They clarify that the fractal dimension
of the configuration of 12 500 coarse-grained atoms by RMC analysis is consistent with that of
the original DLCA configuration.

In the previous study, we have developed the two-dimensional pattern reverse Monte Carlo
(2D pattern RMC) method for the uniaxial system in order to make the model of structures from
the two-dimensional structure factors and examined the validity for the hard sphere system [14].
In this paper, we present the preliminary results of the 2D pattern RMC analysis of the two-
dimensional structure factors due to silica particles in a uniaxially elongated styrene–butadiene
rubber.

In section 2, the 2D pattern RMC analysis for the uniaxial system is explained. In section 3,
the 2D pattern RMC results for nano-particles in elongated rubbers are presented. A summary
is given in the last section.

2. Two-dimensional pattern RMC for uniaxial system

2.1. Reverse Monte Carlo method

The reverse Monte Carlo (RMC) analysis [15–19] is widely used as a powerful tool modelling
a realistic three-dimensional structure from the structure factor of the diffraction data obtained
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by x-ray and neutron scattering experiments for disordered systems. In the RMC simulation,
the three-dimensional configuration is repeatedly reconstructed so that the difference between
observed and calculated structure factors is minimized within errors. RMC simulation starts
with the initial configuration of particles. Then, the structure factor is recalculated for a trial
move, which is chosen randomly and satisfies physical constraints such as excluded volume
of particles, and the difference �(χ2) of the goodness-of-fit parameter χ2 in each move is
calculated by the following equation:

χ2 =
∑

q(Sexp(q) − Scalc(q))2

σ 2
std

, (1)

where Sexp(q) denotes the structure factor obtained from experiments, Scalc(q) the calculated
one, and σstd is the standard deviation. For �(χ2) � 0, every trial move is accepted.
Trial moves which worsen the fit (�(χ2) > 0) are accepted with a probability of P =
exp(−�(χ2)/2). These steps are repeated until χ2 converges well enough. The original RMC
are applied only for the one-dimensional structure data such as structure factor S(q) and radial
distribution function g(r), which are described as a function of a wavenumber q and a distance
r , respectively. Therefore, the application of original RMC is designed to model isotropic
structures.

We extended the reverse Monte Carlo method for anisotropic two-dimensional patterns
of structure factor S(qx , qy) instead of one-dimensional function S(q). (The detail of the
calculation of two-dimensional structure factor S(qx, qy) is given in section 2.2.) The
difference �(χ2) is calculated by the following equation:

χ2 =
∑

qx ,qy
(Sexp(qx, qy) − Scalc(qx, qy))

2

σ 2
std

(2)

instead of equation (1). For the case that S(qx , qy) converges to unity for a large q =
√

q2
x + q2

y ,

the sum is taken over qx and qy that satisfy condition q2
x + q2

y < q2
max. 2D pattern RMC

analysis needs huge requirements of computational resources. The programming source
is coded using the MPI (message passing interface) on the Earth Simulator. The Earth
Simulator is a distributed memory parallel computing system consisting of 640 processor nodes
interconnected by a single-stage crossbar network, where one node has eight vector processors
with shared memory. Our programming code is highly optimized and its parallel work ratio
is 99.855%. In product runs, we used about one hundred processors without a loss due to
overheads for parallel computing.

2.2. Two-dimensional structure factor

In the framework of the 2D pattern RMC for uniaxial systems, two-dimensional structure
factors are calculated as follows [14]. The structure factor of a one-component system is defined
as S(q) = (1/N)

∑
j,k exp(iq · (r j − rk)), where ri stands for the position of the i th particle

and N is the number of particles. It can be calculated as

S(q) = 1 + n0

∫

dr (g(r) − 1) exp(iq · r) (3)

by using the known radial distribution function g(r), where n0 = N/L3 denotes the average
number density. For SAXS and SANS, we can approximate qz as 0. We present the theoretical
treatment for the two-dimensional structure factor of the sample elongated in the x-direction.
Here, the symmetry between y- and z-directions is assumed to hold, which is supported by
2D-USAXS experiments on elongated rubber. By assuming qz = 0 and y–z symmetry, we can
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rewrite the three-dimensional Fourier transformation, equation (3), into the two-dimensional
one as follows.

(i) Firstly, we count the number n(x, r⊥) of particles in the unit area (�X × �R⊥) is (x, r⊥),
where r⊥ = √

y2 + z2.

n(x, r⊥) = 1

N

∑

i

∑

j

a(x − xi + x j , r⊥ − r⊥,i + r⊥, j ), (4)

where a(X, R⊥) is unity for |X | < �X/2 and |R⊥| < �R⊥/2, and zero otherwise. The
pair distribution function ḡ(x, r⊥) in the x–r⊥ plane is obtained as

ḡ(x, r⊥) = n(x, |r⊥|)/(4πn0|r⊥|). (5)

(ii) Secondly, considering the statistical weight for r⊥, the reweighted pair distribution
function ĝ(x, r⊥) is obtained as

ĝ(x, y) − 1 =
∑

z

(ḡ(x,
√

y2 + z2) − 1). (6)

(iii) The two-dimensional structure function S(qx , qy), which corresponds to the S(q) of the
one-dimensional function, can be obtained by two-dimensional Fourier transformation
using the reweighted pair distribution function ĝ(x, y) estimated in the x–y plane.

S(qx, qr⊥ ) = 1 + n0

∫

dx dr⊥ (ĝ(x, r⊥) − 1)ei(qx x+qr⊥ r⊥). (7)

Here, we set ĝ(x, r⊥) = 1 for x2 + r 2
⊥ > r 2

c in order to remove the effect of the shape of
the area of (qx, qr⊥ ) in the integral equation.

3. Results

In this paper, the preliminary result of 2D pattern RMC analysis, which is applied to the
structure of spherical silica nano-particles in an elongated rubber, is presented. The used sample
is a styrene–butadiene rubber filled with spherical silica particles with a volume fraction of
20.2%. The diameter σ of the silica particles used is a monodispersed size distribution and
282.2 nm. The two-dimensional structure factor used as an input of 2D pattern RMC analysis
is calculated by using the rescaled spherical mean approximation [20–22] due to the weakly
dispersed diameter of nano-particles. First, we examined the unelongated case (the elongation
ratio ε = 0) and the case of the elongation ratio ε = 1.5, where the elongation ratio ε is defined
by �L/L, L is the initial length, and �L is the elongation length of the sample.

Here, the volume fraction for ε = 1.5 is equal to that for ε = 0 because the assumption
of affine deformation is considered to be good for ε = 1.5. 2D-USAXS experiments were
performed in BL20XU at SPring-8. For 300 nm size silica particles, a two-dimensional
structure factor in the range of qσ � 1.2–7.0 can be observed. The observed patterns of
scattering intensity I exp(qx, qy) and corresponding structure factor Sexp(qx, qy) are shown in
figures 1 and 2. It is noted that the relation Sexp(qx, qy) � Sexp(qx, qz) is assessed to hold by
the experiments (the data are not presented here). Here, Sexp(qx, qy) is calculated by using the
rescaled mean spherical approximation. The form factor F(qx, qy) is estimated as F(qx, qy) =∫

dσ f (σ )P(q, σ ), where I exp(qx , qy) = F(qx, qy)Sexp(qx, qy), f (σ ) denotes the distribution
probability of the particle diameter and P(q, σ ) is the form factor of a particle whose diameter
is σ , and is analytically given as P(q, σ ) ∝ ((qσ/2)−3[sin(qσ/2) − (qσ/2) cos(qσ/2)])2.
Here, the validity of these treatments is confirmed for the case of a dilute silica particle
system and the estimated distribution f (σ ) is in agreement with that obtained from direct TEM
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Figure 1. Scattering intensity I exp(qx , qy): left, the unelongated case (ε = 0), and right, the case
of the elongation ratio ε = 1.5.

Figure 2. Structure factor Sexp(qx , qy): left, ε = 0, and right, ε = 1.5.
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Figure 3. Azimuthally averaged structure factors: upper, ε = 0, and lower, ε = 1.5.

observations. Under this approximation, the factor of Sexp(qx, qy) is determined as Sexp(qx, qy)

as qσ � 1 approaches unity, where q =
√

q2
x + q2

y . However, this determination method of

the factor seems to be wrong for RMC analysis. These features are easily observed through the
azimuthally averaged structure factors Sexp(q) shown in figure 3. Because the value of Sexp(q)

around qσ � 2π should be larger than unity, the appropriate scaling factor α is required for
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Figure 4. Structure factor Scalc(qx , qy) calculated from the 3D configuration obtained by 2D pattern
RMC analysis: left, ε = 0, and right, ε = 1.5.

Sexp(qx, qy) in RMC analysis. Instead of equation (2), the difference �(χ2) is calculated by
the following equation:

χ2 =
∑

qx ,qy
(Sexp(qx, qy) − αScalc(qx , qy))

2

σ 2
std

. (8)

For the presented experimental data, the steepest descent method for the scaling factor α seems
to be not stable. In the present analysis, the constant value of the scaling factor α is estimated
from the value c, for which limq→∞ Sexp(q) → c, by performing the conventional RMC
program for the azimuthally averaged structure factors Sexp(q). The values of α are estimated
to be 0.4243 and 0.3094 for ε = 0 and 1.5, respectively. The validity of these estimations of the
scaling factors should be examined by the experiments. Note that the scaling factor α can be
determined with the help of the wide angle x-ray scattering experiments even if the dispersion
of the particle diameter is not negligibly small. For this analysis, the required range of qσ might
be wide, such as qσ < 25, in order to avoid the artifacts in Sexp(qx, qy) around qσ � 9.0, 15.5
and 22 due to the effects of the weak dispersion of the particle diameter. Experiments in this
direction are also in progress.

In the present analysis, the data in the range of qσ � 1.45–7.0 are used, where the spacing
of q is �q � 0.06/σ and the range and the spacing of r are chosen as r/σ � 0–6.9 and
�r � 0.03σ , respectively. In order to avoid effects of the periodic boundary condition (PBC),
we choose the dimension of the box of the PBC as larger than four times (2π/1.45), and the
number of particles is set to 8192. A configuration obtained from the molecular dynamics
simulation of hard sphere systems is used as an initial configuration.

Figure 4 shows the two-dimensional structure factor Scalc(qx, qy) calculated from the
obtained three-dimensional structure model of the nano-silica particles. For both cases, the
behaviour of Scalc(qx, qy) seems to be in agreement with that of the corresponding Sexp(qx, qy)

without the scaling factor. The slices of the snapshot are shown in figure 5.
In figure 6, bonds are drawn between particles with a distance which is smaller than 1.2

times the diameter of the silica particles, in order to clarify the shape of the large scale structure
of the silica particles. Figures 7(a) and (b) show the pair distribution functions ĝ(x, y) which
present the local structure of silica particles.

In these snapshots, we can find the large density fluctuation and the large scale network
structure. Such a network structure is also observed in 3D-TEM experiments [2–4], where the
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elongation

Figure 5. Slice of a snapshot: left, ε = 0, and right, ε = 1.5. The presented region is
6 μm × 6 μm × 1.2 μm.

elongation

Figure 6. Slice of a snapshot with neighbouring bonds: left, ε = 0, and right, ε = 1.5. The same
area as in figure 4 is presented.

(a) (b)

Figure 7. Pair distribution function ĝ(x, y): (a) ε = 0 and (b) ε = 1.5.

diameter of nano-particles used in 3D-TEM experiments is about 20 nm and different from that
used in the present 2D-USAXS experiments. Although a characteristic length of the present
system cannot be estimated, we expect to be able to estimate those for the case of 100 nm size
silica particles, because it is observed that the value of Sexp(qx, qy) radically increases with
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Figure 8. (a) The distribution of angles θ between the x-axis and the bonds and (b) the distribution
of the coordination number.

decreasing q for small qσ . In the present case, the large value of Scalc(qx, qy) for qσ � 1.2
and the peak of Scalc(qx, qy) around qσ � 0.7 is observed, although the data are not presented
here. In order to clarify a characteristic length, the experimental data of small qσ < 1 are
needed. In the case of 100 nm size silica particles, the structure factor for qσ � 0.4–2.2 and
that for qσ > 2.1 are observed by using the beam lines BL20XU and BL40B2 at SPring-
8, respectively. The experiment of the 100 nm size silica particles and the 2D pattern RMC
analysis using both data from BL20XU and BL40B2 is in progress.

In order to examine the difference among the different elongation ratios, the behaviour of
the local structure is examined. Although the characteristic length of the density fluctuation
is not reliable, we can discuss the local structure because the values of the structure factor
in the corresponding q are fitted to the experimental data. Figure 7 shows the difference of
the pair distribution function ĝ(x, y) among ε = 0 and 1.5. Although the pair distribution
function ĝ(x, y) seems to be isotropic for ε = 0, the new peak intensity of ĝ(x, y) increases
with increasing elongation ratio. This means that the silica particles in the elongated rubber
form some structure. The change of the local structure can be examined by orientations of
bonds which connect two particles whose distances are not larger than 1.2 times the particle
diameter as shown in figure 5. In order to examine the effect on orientations of bonds due
to the elongation, figure 8(a) shows the distribution of angles θ between the x-axis (the axis
of elongation) and the bonds, where this distribution for the isotropic case is proportional to
sin θ . The distribution around θ � 45◦ increases and that around θ � 15◦ decreases with
increasing elongation ratio. It is found that the change to the distribution of the number of
bonds corresponds to that of ĝ(x, y). The distribution of the coordination number is shown in
figure 8(b). It is found that the distribution for ε = 1.5 is the same as that for ε = 0. When we
compare it with ĝ(x, y) obtained by using another initial configuration, which forms a certain
regular lattice, the dependence of ĝ(x, y) on an initial configuration is negligibly small.

4. Summary

We perform the two-dimensional pattern reverse Monte Carlo (2D pattern RMC) method for
a uniaxial system and analyse the two-dimensional patterns of structure factor S(qx, qy) for
300 nm size silica particles in the elongated rubber. The structure factor S(qx , qy) is calculated
from the scattering intensity observed in the present 2D-USAXS experiments using the rescaled
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spherical mean approximation. It is found that the obtained 3D structure has a network
structure, which is also observed in 3D-TEM experiments [2–4] for about 20 nm size silica
particles, to examine the effect on orientations of bonds due to the elongation, the distribution
of angle θ between the axis of the elongation and the bonds. It is found that the distribution
around θ � 45◦ increases and that around θ � 15◦ decreases with increasing elongation ratio.
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